Leseprobe

Dr.-Ing. Paul Christiani GmbH & Co. KG www.christiani.de

Indice

Contenido y coloca	ación en el maletín	1
Presentación de lo	s distintos componentes	2
Montaje del sist	ema	8
Determinación o	de aplicaciones/Indicaciones de seguriad	10
Experimentos d	e Energía eólica	
Experimento 1	Medición de velocidad del viento en el ambiente	11
Experimento 2	Medición de velocidad del viento del soplador en dependencia de la posición del potenciómetro	12
Experimento 3	Medición de potencia de salida del aerogenerador en dependencia de la forma de la pala	13
Experimento 4	Medición de potencia de salida del aerogenerador en dependencia del número de palas	14
Experimento 5	Medición de potencia de salida del aerogenerador en dependencia de la posición de la pala	15
Experimento 6	Medición de la curva característica del aerogenerador con un constante número de revoluciones	16
Experimento 7	Medición de la curva característica en modos de sustentación y de resistencia con velocidad de viento constante	17
Experimento 8	Medición de potencia de salida del aerogenerador en dependencia de la velocidad del viento	18

M. Schroeder | Solartrainer junior spanisch Experimentos de engergia eólica

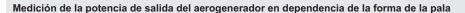
Artikelnr.: 81802

seit 1931

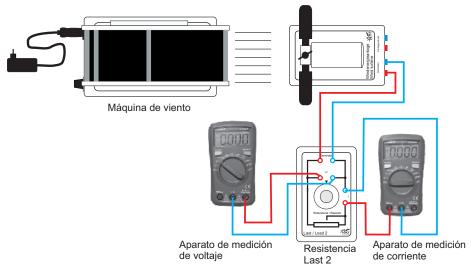
Experimento 9	Medición de la potencia de salida en el rotor Savonius con rendija cerrada o abierta	19		
Experimento10	Medición de la curva característica de tensión / corriente en el rotor Savonius con una velocidad de viento constante	20		
Experimento11	Carga de un condensador GoldCap / acumulador con un aerogenerador	21		
Experimento12	Descarga de un condensador GoldCap / acumulador	22		
Experimento13	Montaje de una red aislada	23		
Símbolos de conexión y definiciones24				

Índice

- 1 Placa base
- 2) Tornillo moleteado
- (3) Instrucciones
- (4) Soluciones
- (5) Ranura para colgar la placa base



- 6 Máquina de viento
- 7) 2 Multimetros (1x abajo)
- (8) Pantalla para viento
- (9) Cofia protectora
- (10) Aerogenerador axial
- 8 palas, 4x llanas, 4x arqueadas
- (12) Destornillador (abajo)
- 8 cables de medición 4x rojos, 4x azules
- (14) Cable para la red eléctrica
- (15) Módulo acumulador
- Módulo de carga "Last 1" (módulo consumidor)
- Módulo de carga "Last 2" (potenciómetro)
- Rotor Savonius con pantallas introductoras (abajo)
- (19) Rotor Savonius parte inferior

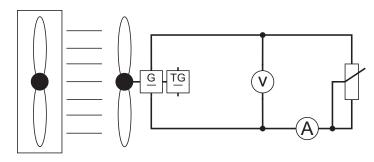

Colchón de espuma (sin ilustración)

1

Montaje

Experimento 2

Información


Este experimento es uno de los más simples. La única dificultad surge al montar las palas arqueadas en "sentido contrario". Para esto se debe usar la escala graduada de la cofia protectora.

Los resultados de este "simple experimento" son importantes. Se observará como esperado una mejora de rendimiento con las palas arqueadas, ya que estas proporcionan más sustentación que las palas llanas.

Al emplear una de las palas arqueadas en "sentido contrario", se neutraliza la fuerza de sustentación adicional y se verá aproximadamente el resultado observado con palas llanas.

Este resultado hace un incapié al analisis práctico y teórico mecanismo de sustentación según el tipo de aspas de un aerogenerador.

Diagrama de circuitos

© by Dr.-Ing. Paul Christiani GmbH & Co. KG

Artikelnr.: 81802

seit 1931

Información

A lo largo del desarrollo de los aerogeneradores se utilizaron distintas formas de palas para la conversión de energía.

Este experimento sirve para analisar la influencia de la forma de la pala en el comportamiento del generador.

Ejercicio

Construir el experimento correspondiente a la descripción de arriba.

El generador funcionará en modo de sustentación con dos palas.

Girar el selector del multímetro en la posición V ____ (DC), el otro para la medición de corriente en la posición A ____ (DC).

Para la carga, la resistencia de la carga 2 (con el multímetro en el rango Ω) establecido en un valor de 50 Ω .

Se realizarán en total tres mediciones con aspas de dos diferentes formas.

A continuación montar las aspas planas con un ángulo de 60° y ajustar el potenciómetro del soplador de viento a una velocidad de 8 m/s. Para esto usar el diagrama del experimento 2.

Medir la tensión y la corriente del generador y calcular la potencia.

Llevar a cabo la misma medición con las palas arqueadas. La curvatura tiene que coincidir con los símbolos indicados en la escala graduada de la cofia protectora ("sentido normal").

Finalmente se repite la medición, pero se gira una de las palas **180° de forma que** la curvatura quede en el ("sentido contrario") con respecto a la otra.

Todas los valores son anotados en una tabla. La potencia P se calcula por medio del producto de voltaje y corriente.

Α:		L
Α	ius	tes

Modo del generador: sustentación Número de palas: 2 Forma de palas: llano / arqueado

Ajuste angular: 60° Velocidad de viento: 8 m/s Resistencia de carga 50Ω .

alto? Justificarlo?.

	1. Pala	2. Pala	U (V)	I (mA)	P (mW)
Pala Ilana	/	/			
Pala arqueada (Sentido normal)	7	ノ			
Pala arqueada (sentido contrario)	7				

••••	
2.	Comparar la tercera medición con las dos mediciones precedentes. Justificar el resultado.

1. Comparar la primera y la segunda medición. Cón que forma de pala se alcanza un resultado mas

Medición de la potencia de salida del aerogenerador en dependencia de la forma de la pala

Experimento 2

13