Table of Contents

I. Materials Properties and Cathode Construction 1

INTRODUCTION .. 1

THE CARBON LINING ... 4

- Anthracite ... 5
- Natural graphite ... 12
- Synthetic graphite ... 12
- Binders ... 15
- Ramming pastes ... 17
- Cathode blocks ... 21
- Classification of cathode blocks ... 26
- Choice of bottom block materials .. 35
- Sidewall blocks ... 36
- Carbon glues and cements ... 43

REFRACTORIES AND INSULATION ... 48

- Thermal insulation ... 52
- Alumina powder ... 53
- Dense refractory materials ... 54
- Composite or sandwich insulation .. 54

PROPERTIES OF REFRACTORY AND INSULATION MATERIALS 55

DIFFUSION AND PENETRATION BARRIERS ... 63

- Steel plates ... 64
- Graphite foil .. 65
- Glass .. 65
- Bricks and tiles ... 66
- Monolithic castables ... 68
- Dry barrier materials ... 69

STEEL SHELLS AND SUPPORTS .. 71

INSTALLATION .. 74

- Refractories and insulation ... 74
- Collector bar installation ... 77
- Bottom block installation ... 83
- Sidewall .. 86
- Rammed parts .. 88

CATHODE MODEL COMPUTATIONS .. 93

WETTABLE CATHODES ... 96

- Introduction ... 96
- Properties of TIB2 materials ... 97
- Industrial trials ... 100

REFERENCES ... 106
II. PREHEATING, START AND OPERATION

PREHEATING AND STARTUP ____________________________ 111

- Preheating methods
- Ramming paste
- Liquid metal
- Anode bake-out
- Resistive preheating
- Flame preheating
- Electrical panels
- Liquid bath (cold start)
- Comparision of preheat methods
- Conclusions concerning preheat methods
- Displacements of lining materials

THE STARTUP AND BATH SOAKING PERIOD ____________________________ 149

EARLY OPERATION ____________________________ 159

NORMAL OPERATION ____________________________ 162

- Temperature and bath ratio
- Heat balance and ledge formation
- Potholes and cracks

POT LIFE PREDICTION ____________________________ 170

REFERENCE ____________________________ 180

III. CHEMICAL REACTIONS AND WEAR ______________ 183

GASIFICATION AND OTHER SURFACE REACTIONS ______________ 183

- Carbon lining oxidation
- Oxidation and exfoliation of steel shell

FORMATION OF ALUMINIUM CARBIDE ______________ 189

LABORATORY WEAR EXPERIMENTS ______________ 193

WEAR IN INDUSTRIAL CELLS ______________ 205

BOTTOM WEAR MECHANISM ______________ 210

CHEMICAL REACTIONS WITHIN THE CARBON LINING ______________ 211

- Sodium and melt penetration
- Reaction thermodynamics
- Experimental verification of the penetration/reaction model
- Electrolyte penetration and reactions in carbon cathodes during industrial aluminium electrolysis
- Sodium reactions in carbonaceous sidewall blocks
- Lithium and potassium in the cathode
- NaCN formation

REACTIONS WITH THE COLLECTOR BAR ______________ 235

REACTIONS IN REFRACTORIES AND INSULATION ______________ 236

- Penetration of bath components into the refractory layer
- Reactions between electrolyte and aluminosilicate refractories
- Reactions between sodium vapor and aluminosilicate refractory
- Combined reaction of bath and sodium
Reactions with other refractories 249
Reactions with aluminium 251
Reactions with ceramic sidewall materials 253
REFERENCES 257

IV. PHYSICAL CHANGES DURING CELL OPERATION 261
THERMAL EXPANSION AND SHRINKAGE 261
Cathode blocks 262
Ramming paste 262
Collector bar and steel shell 267
Combined thermal dilations 269
Refractories and insulation 272
ELECTRICAL PROPERTIES 273
Electrical properties of virgin lining materials 274
Changes of electrical properties over time 278
THERMAL CONDUCTIVITY 297
Thermal conductivities of virgin cathode block materials 297
Changes of thermal conductivities of carbon block materials with time 298
Correlation of the electrical and thermal conductivity of carbon block materials 298
Thermal conductivity of refractory materials 300
SODIUM EXPANSION 302
Free expansion 302
Expansion with pressure 305
CATHODE HEAVING 311
Vertical expansion gradients 311
Salt crystallization 313
Material conversion 314
Movement restraints 315
MECHANICAL STRENGTH 319
REFERENCES 325

V. CHARACTERIZATION OF CATHODE MATERIALS 329
INTRODUCTION 329
STANDARD CHARACTERIZATION OF CARBONACEOUS MATERIALS 330
Survey of ISO Test Methods for cathodes, ramming paste and refractories 330
Sampling (ISO 8007-1: 1999) 331
Apparent density (ISO 12985-1, 2:2000) 334
Open porosity (ISO 12985-2:2000) 336
Total porosity 338
Electrical resistivity at ambient temperature (ISO 11713: 2000) 338
Thermal conductivity (ISO 12987:2004) 339
<table>
<thead>
<tr>
<th>Property</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal expansion (ISO 14420: 2005)</td>
<td>340</td>
</tr>
<tr>
<td>Mechanical properties and geometry</td>
<td>341</td>
</tr>
<tr>
<td>Compressive strength (ISO 18515 : 2007)</td>
<td>341</td>
</tr>
<tr>
<td>Tensile strength (ASTM C 651)</td>
<td>345</td>
</tr>
<tr>
<td>Young's modulus (DIN 51915)</td>
<td>346</td>
</tr>
<tr>
<td>Expansion of carbon due to sodium penetration (ISO 15379-1, 2: 2004)</td>
<td>348</td>
</tr>
<tr>
<td>Ash content (ISO 8005:2007)</td>
<td>350</td>
</tr>
<tr>
<td>Sampling of cold and tepid ramming paste (ISO 14422:1999)</td>
<td>350</td>
</tr>
<tr>
<td>Volatile matter content of unbaked paste (ISO/TS 14425: 1999)</td>
<td>352</td>
</tr>
<tr>
<td>Compaction characteristics of ramming paste (ISO 17544: 2004)</td>
<td>353</td>
</tr>
<tr>
<td>Preparation of unbaked paste specimens and determination of apparent density after compaction (ISO 14427: 2004)</td>
<td>356</td>
</tr>
<tr>
<td>Thermal expansion and shrinkage of ramming paste during baking (ISO 14428: 2004)</td>
<td>356</td>
</tr>
<tr>
<td>Properties of baked ramming paste</td>
<td>358</td>
</tr>
</tbody>
</table>

STANDARD TESTS FOR REFRACTORIES AND INSULATION BRICKS

<table>
<thead>
<tr>
<th>Test</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>360</td>
</tr>
<tr>
<td>Sampling and acceptance testing for shaped refractory products (ISO 5022: 1979)</td>
<td>361</td>
</tr>
<tr>
<td>Bulk density and true porosity (porosity >45%) (ISO 5016: 1997)</td>
<td>361</td>
</tr>
<tr>
<td>Bulk density, apparent porosity and true porosity (porosity <45%) (ISO 5017: 1998)</td>
<td>361</td>
</tr>
<tr>
<td>Real or true density (ISO 5018: 1983)</td>
<td>362</td>
</tr>
<tr>
<td>Gas permeability of refractory products (ISO 8841: 1991)</td>
<td>362</td>
</tr>
<tr>
<td>Cryolite resistance for dense refractory bricks (ISO 20292: 2009)</td>
<td>364</td>
</tr>
</tbody>
</table>

NON-STANDARD CHARACTERIZATION

<table>
<thead>
<tr>
<th>Test</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>High temperature electrical resistance</td>
<td>366</td>
</tr>
<tr>
<td>Thermal conductivity at elevated temperatures</td>
<td>369</td>
</tr>
<tr>
<td>Thermal shock</td>
<td>370</td>
</tr>
<tr>
<td>Fracture mechanics</td>
<td>373</td>
</tr>
<tr>
<td>Crack detection</td>
<td>375</td>
</tr>
<tr>
<td>High temperature strength testing</td>
<td>375</td>
</tr>
<tr>
<td>Density control during installation</td>
<td>377</td>
</tr>
<tr>
<td>Abrasion resistance of carbon during electrolysis</td>
<td>378</td>
</tr>
<tr>
<td>Oxidation resistance of carbon</td>
<td>378</td>
</tr>
<tr>
<td>Rate of sodium penetration in carbon</td>
<td>378</td>
</tr>
</tbody>
</table>
Cathodes in Aluminium Electrolysis

I. MATERIALS PROPERTIES AND CATHODE CONSTRUCTION

INTRODUCTION

The fundamental assembly of the aluminium reduction cell cathode, a tray-shaped carbon vessel, has not changed in more than 100 years since Charles M. Hall and Paul L.T. Héroult independently of each other in 1886 conceived their idea of aluminium electrolysis in a molten fluoride electrolyte (Figure I-1). Today's industrial cathode lining construction is, however, far removed from the 1890'ies crude mix of pitch and coke filler [1]. The present cathode engineering is a product of high technology and knowledge both in materials and design, capable of achieving a service life of more than 10 years [2,3]. This, however, is not only dependent upon lining quality, but also on pre-heating, start-up and operational procedures.

Although the molten metal pad is the acting cathode in industrial aluminium electrolysis, the name “cathode” is used here, and throughout the industry, to describe the container of molten metal and electrolyte. This includes the electrically conducting carbon lining with current collector bars, refractories and insulation, all being encased in a supporting steel shell.

Hall and Héroult developed more than hundred years ago a lining of a monolithic carbon body rammed in place. This concept was kept fundamentally unchanged up to 1920 [5]. The ramming mixes consisted of metallurgical coke, anthracite or petroleum coke and a tar binder. In the early small cells, riveted steel tanks or cast iron vessels also served as the supporting shell.

Figure I-1. Pots designed by Héroult in 1892-93. a) Pot with six cylindrical anodes. b) Pot with four electrodes (from Peterson and Miller [4]).

VIII. TRENDS AND DEVELOPMENTS

GENERAL TRENDS

CA THODE CARBON MATERIALS

RAMMING PASTE

GLUING

SIDEWALL MATERIALS

REFRACTORIES

STEEL SHELL

WASTE PRODUCTS

MATHEMATICAL MODELS

WETTABLE CATHODE

REFERENCES

REFERENCES

INDEX